ЗАО «АКВИЛОН»

МЕТОДЫ КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА продовольственное сырье и пищевые продукты

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ ДОЛИ КАДМИЯ, СВИНЦА, МЕДИ И ЦИНКА В ПИЩЕВОЙ ПРОДУКЦИИ МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

ФР 1.31.2008.01733

Методика выполнения измерений (МВИ) массовой доли кадмия, меди, свинца, цинка в пищевой продукции методом инверсионной вольтамперометрии метрологически аттестована ФГУП «Всероссийским научно-исследовательским институтом Метрологической службы» (ФГУП «ВНИИМС») Федерального Агенства по техническому регулированию и метрологии

Свидетельство о метрологической аттестации № 22-08 от 04 марта 2008.

Методика прошла апробацию в испытательных лабораториях ЦСМ, ЦГСЭН и предприятий перерабатывающей промышленности.

Регламентированный в МВИ метод инверсионной вольтамперометрии определения массовой доли кадмия, меди, свинца, цинка в пробах продовольственного сырья и пищевых продуктов может применяться в испытательных лабораториях Госсанэпиднадзора, Центров стандартизации и метрологии, лабораториях предприятий отрасли. МВИ не имеет ограничения срока действия.

МВИ считается подлинником при наличии печати разработчика

V	летигій	помер	экземпляра	
J	чстный	помср	экзсмиляра	

Разработчик: 3AO «Аквилон»

Адрес: 111024, г.Москва, пр.2-й Кабельный, д.1 тел./факс (495) 925 72 20 (21) (многоканальный)

E-mail: akvilon@akvilon.su

Право тиражирования принадлежит разработчику.

Полное или частичное тиражирование, копирование и размещение в Интернете и на любых других носителях информации данных материалов без письменного разрешения ЗАО " АКВИЛОН» преследуется по ст.146 УК РФ.

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ ДОЛИ КАДМИЯ, СВИНЦА, МЕДИ, ЦИНКА В ПИЩЕВОЙ ПРОДУКЦИИ МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика выполнения измерений устанавливает инверсионновольтамперометрический метод определения массовой доли кадмия, меди, свинца, цинка в пищевых продуктах и продовольственном сырье.

Метод обеспечивает получение результатов измерений массовой доли кадмия, свинца, меди, цинка в пищевых продуктах и продовольственном сырье в диапазонах и с погрешностями, приведенными в таблице 1.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 8.563-96	Государственная система обеспечения единства измере-

ний. Методики выполнения измерений

ГОСТ 26929-94 Сырье и продукты пищевые. Подготовка проб. Минера-

лизация для определения токсичных элементов.

ГОСТ Р ИСО 5725- Точность (правильность и прецизионность) методов и

2002 результатов измерений. (Части 1-6)

СанПиН 2.3.2.1078-01 Гигиенические требования к качеству и безопасности

продовольственного сырья и пищевых продуктов.

МУК 4.1.985-00 Определение содержания токсичных элементов в пище-

вых продуктах и продовольственном сырье. Методика

автоклавной пробоподготовки.

МУК 4.1.986-00 Методика выполнения измерений массовой доли свинца

и кадмия в пищевых продуктах и продовольственном сырье методом электротермической атомно-абсорбционной

спектрометрии.

3 ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ

В настоящем стандарте используют определения и сокращения с учетом требований ГОСТ 8.315, ГОСТ Р 1.12, ГОСТ 8.563, СанПиН 2.3.2.1078-01.

4 СУЩНОСТЬ МЕТОДА

Инверсионно-вольтамперометрический метод основан на зависимости тока, проходящего через ячейку анализатора с анализируемым раствором, от массовой доли элемента, содержащегося в растворе и функционально связанного с формой и параметрами приложенного к электродам поляризующего напряжения.

Инверсионно-вольтамперометрический метод базируется на способности анализируемого элемента электрохимически накапливаться на поверхности или в объеме индикаторного (рабочего) электрода и растворяться в процессе анодной или катодной поляризации при определенном потенциале, характерном для каждого элемента.

Высота пика элемента, регистрируемого на вольтамперограмме, пропорциональна массовой доле элемента в растворе.

Процесс вольтамперометрического определения содержания элементов в инверсионном режиме включает в себя:

- -электрохимическую очистку измерительного (рабочего) электрода;
- -электрохимическое накопление элемента на измерительном электроде;
- -электрорастворение накопленного элемента при развертке потенциала при заданных режимах.

Массовую концентрацию элемента в растворах проб после их минерализации определяют методом «стандартных добавок», не требующим построения градуировочной кривой.

«Метод стандартных добавок» основан на регистрации циклов вольтамперограмм при одних и тех же параметрах измерений (приложение A) серии растворов:

1) фонового электролита (фона); 2) пробы, подготовленной к измерениям; 3) той же пробы, в которую вводят раствор-добавку измеряемого элемента, с известной массовой концентрацией.

Объем раствора-добавки, вносимого в измеряемую пробу после регистрации вольтамперограмм, подбирают таким образом, чтобы после введения раствора-добавки в пробу высота аналитического пика определяемого элемента на вольтамперограмме увеличивалась в $(1,5 \ldots 3)$ раза. Раствор-добавку можно вводить последовательно несколько раз * , однако суммарный объем всех добавок * не должен превышать 10% (2 см^3) объема пробы в ячейке.

Примечание * Объем(ы) растворов- добавок, количество их и массовая концентрация регистрируются в программе анализатора.

Результаты измерений рассчитываются автоматически сравнением значений аналитических сигналов элемента на вольтамперограммах серии растворов.

5 МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

При соблюдении всех регламентированных условий и проведении анализа в точном соответствии с данной методикой значение погрешности (и её составляющих) результатов измерений при доверительной вероятности P=0,95 не превышает значений, приведенных в таблице 1 для соответствующих диапазонов измерений.

Таблица 1

Наимено- вание элемента	Диапазон из- мерений мас- совой доли, млн ⁻¹ (мг/кг)	Показатель точности (границы относительной погрешности), $\pm \delta$, % при P=0,95	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %	Предел повторяемости, г, % P=0,95, n=2		
1	2	3	4	5	6		
Кадмий	От 0,020 до 1,0 вкл.	32	5,5	16	15		
Свинец	От 0,0020 до 5 вкл.	28	7,5	14	21		
Цинк	От 0,010 до 100 вкл	25	5	12	14		
Медь	От 0,0010 до 20 вкл.	20	3,5	9	10		

6 ТРЕБОВАНИЯ К УСЛОВИЯМ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений соблюдают следующие условия:

Температура окружающего воздуха, °С 20 − 35

Атмосферное давление, кПа $84,0 - 106,1(760 \pm 30 \text{ мм рт.ст.})$

Относительная влажность воздуха, % 65 ± 15 Частота питающей сети, Γ ц 50 ± 1 Напряжение питания в сети, B 220^{+22}_{-33}

7. СРЕДСТВА ИЗМЕРЕНИЙ, ОБОРУДОВАНИЕ, РЕАКТИВЫ

7. 1 Анализатор вольтамперометрический АКВ-07МК по ТУ 4215-001-81696414 с трехэлектродным датчиком и системой сбора и обработки данных со следующими метрологическими характеристиками:

предел обнаружения ионов кадмия, $M\Gamma/дM^3$ 5*10⁻⁵;

предел допускаемых значений относительного (СКО) случайной составляющей погрешности результатов измерений, % - не более 4.

 $7.2~\Gamma CO$ состава водных растворов ионов металлов с аттестованным значением массовой концентрации ионов $1,0~\Gamma/\text{дм}^3$ и относительной погрешностью аттестованного значения не более (± 1)% (при P=0,95). Например:

- ГСО раствора ионов кадмия 5690 или 7472;
- ГСО раствора ионов свинца 7012 или 7252;
- ГСО раствора ионов цинка 8053 или 7227;
- ГСО раствора ионов меди 7998 или 7226;
- 7.3 Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г кл. специальный по ГОСТ 24104.
- 7.4 Дозаторы медицинские лабораторные переменного объема 5-100 и 200-1000 мкл. по ГОСТ 28311.
- 7.5 Пипетки мерные лабораторные стеклянные 2 класса точности по ГОСТ 29227 и ГОСТ 29169: вместимостью 0.5; 1.0; 2.0; 5.0; 10.0 см³.
- 7. 6 Посуда мерная лабораторная стеклянная 2 класса точности по ГОСТ 1770: колбы мерные наливные вместимостью 25 см 3 ; 50 см 3 ; 100 см 3 ; 500 см 3 ; 1000 см 3 ; цилиндры вместимостью 10 см 3 ; 25 см 3 ; 50 см 3 , 1000 см 3 ; пробирки мерные вместимостью 10 см 3 ; 15 см 3 ; 20 см 3 .
- 7. 7 Шкаф сушильный лабораторный с диапазоном регулирования температуры $40 150^{\circ}$ С.
- 7. 8 Аналитический автоклав МКП-04 или МКП-05 АНКОН АТ-2 или электропечь сопротивления камерная лабораторная с диапазоном регулирования температуры $200 1100^{0}$ C.
 - 7. 9 Аппарат для приготовления бидистиллированной воды (стеклянный) ACД-4 по ГОСТ 28165.
 - 7. 10 Баня песчаная.
- 7. 11 Чаши выпарительные вместимостью $20-50~{\rm cm}^3$ по ГОСТ 29225 или по ГОСТ 1990
- 7. 12 Воронки фильтрующие ВФ-1-32 ПОР 40 ТХС, B-25-312 XC, B-36-50 XC по ГОСТ 25336.
 - 7. 13 Палочки стеклянные по ГОСТ 21400.
 - 7. 14 Калий хлористый по ГОСТ 423
 - 7. 15 Кислота азотная марки "ос.ч"по ГОСТ 4461 или ГОСТ 11125 ($d = 1,42 \text{ г/см}^3$).
 - 7. 16 Спирт этиловый ректификованный, технический по ГОСТ 18300
 - 7. 17 Кислота серная по ГОСТ 4204 ($d = 1, 84 \text{ г/см}^3$).
 - 7. 18. Кислота соляная по ГОСТ 14261 ($d = 1,185 \text{ г/см}^3$).
 - 7. 19 Ртуть (II) азотнокислая, одноводная по ГОСТ 4520
 - 7. 20 Вода дистиллированная по ГОСТ 6709.

Примечание - Допускается применение других средств измерений, вспомогательного оборудования, реактивов и материалов с метрологическими и техническими характеристиками не хуже указанных выше. Все реактивы должны быть квалификации ос.ч или х.ч.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

метрологической службы

119361 Москва, Озёрная ул., д. 46

E-mail: analyt-vm@vniims.ru

Тел. (495) 437 9419 Факс: (495) 437 5666

СВИДЕТЕЛЬСТВО № 22-08

ОБ АТТЕСТАЦИИ МВИ

Методика выполнения измерений массовой доли кадмия, свинца, меди и цинка в пищевой продукции методом инверсионной вольтамперометрии

Методика выполнения измерений массовой доли кадмия, свинца, меди и цинка в пищевой продукции методом инверсионной вольтамперометрии, разработанная ЗАО "Аквилон", аттестована в соответствии с ГОСТ Р 8.563–96 и ГОСТ Р ИСО 5725–2002.

Аттестация осуществлена по результатам экспериментальных исследований MBИ.

В результате аттестации установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает основными метрологическими характеристиками, приведенными на обороте настоящего свидетельства.

При реализации методики в лаборатории обеспечивают контроль стабильности результатов анализа на основе контроля стабильности среднеквадратического отклонения повторяемости и показателя правильности.

Дата выдачи

4 марта 2008 года

Заместитель директора

В. Н. Яншин

РЕЗУЛЬТАТЫ МЕТРОЛОГИЧЕСКОЙ АТТЕСТАЦИИ

Наимено- вание элемента	Диапазон измерений массовой доли, млн ⁻¹ (мг/кг)	Показатель точности (границы относительной погрешности), $\pm \delta$, %, при $P=0,95$	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σ_r , %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_{R} , %	Предел повторяемости, г, %, P=0,95, n=2
Кадмий	От 0,020 до 1,0 вкл.	32	5,5	16	15
Свинец	От 0,0020 до 5 вкл.	28	7,5	14	21
Цинк	От 0,010 до 100 вкл.	25	5	12	14
Медь	От 0,0010 до 20 вкл.	20	3,5	9	10

Начальник отдела

The

Ш. Р. Фаткудинова